Modeling Hypoxia in the Chesapeake Bay: Ensemble Estimation Using a Bayesian Hierarchical Model
نویسندگان
چکیده
Quantifying parameter and prediction uncertainty in a rigorous framework can be an important component of model skill assessment. Generally, models with lower uncertainty will be more useful for prediction and inference than models with higher uncertainty. Ensemble estimation, an idea with deep roots in the Bayesian literature, can be useful to reduce model uncertainty. It is based on the idea that simultaneously estimating common or similar parameters among models can result in more precise estimates. We demonstrate this approach using the Streeter-Phelps dissolved oxygen sag model fit to 29 years of data from Chesapeake Bay. Chesapeake Bay has a long history of bottom water hypoxia and several models are being used to assist management decision-making in this system. The Bayesian framework is particularly useful in a decision context because it can combine both expert-judgment and rigorous parameter estimation to yield model forecasts and a probabilistic estimate of the forecast uncertainty.
منابع مشابه
Predicting the Hypoxic-volume in Chesapeake Bay with the Streeter–phelps Model: a Bayesian Approach
Hypoxia is a long-standing threat to the integrity of the Chesapeake Bay ecosystem. In this study, we introduce a Bayesian framework that aims to guide the parameter estimation of a Streeter–Phelps model when only hypoxic volume data are available. We present a modeling exercise that addresses a hypothetical scenario under which the only data available are hypoxic volume estimates. To address t...
متن کاملAnalysis of the Chesapeake Bay Hypoxia Regime Shift: Insights from Two Simple Mechanistic Models
Recent studies of Chesapeake Bay hypoxia suggest higher susceptibility to hypoxia in years after the 1980s. We used two simple mechanistic models and Bayesian estimation of their parameters and prediction uncertainty to explore the nature of this regime shift. Model estimates show increasing nutrient conversion efficiency since the 1980s, with lower DO concentrations and large hypoxic volumes a...
متن کاملModeling the Effect of Hypoxia on Macrobenthos Production in the Lower Rappahannock River, Chesapeake Bay, USA
Hypoxia in Chesapeake Bay has substantially increased in recent decades, with detrimental effects on macrobenthic production; the production of these fauna link energy transfer from primary consumers to epibenthic and demersal predators. As such, the development of accurate predictive models that determine the impact of hypoxia on macrobenthic production is important. A continuous-time, biomass...
متن کاملForecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change
Increasing use of ecological models for management and policy requires robust evaluation of model precision, accuracy, and sensitivity to ecosystem change. We conducted such an evaluation of hypoxia models for the northern Gulf of Mexico and Chesapeake Bay using hindcasts of historical data, comparing several approaches to model calibration. For both systems we find that model sensitivity and p...
متن کاملResolving spatiotemporal characteristics of the seasonal hypoxia cycle in shallow estuarine environments of the Severn River and South River, MD, Chesapeake Bay, USA
The nature of emerging patterns concerning water quality stressors and the evolution of hypoxia within sub-estuaries of the Chesapeake Bay has been an important unresolved question among the Chesapeake Bay community. Elucidation of the nature of hypoxia in the tributaries of the Chesapeake Bay has important ramifications to the successful restoration of the Bay, since much of Bay states populat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008